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Abstract-The reactive power optimization problem is one of the most important problems facing dispatching engineers when they are 
operating large scale power systems. Reactive power optimization is mathematical approach of the power system optimization 
problem which is to determine the least control movements to keep power system at a most desired state. It is very flexible and 
powerful tool which can address a wide range of planning and operation circumstances. However the complexity of reactive power 
optimization often discourages the user. This paper proposes a new artificial neural network-based approach (ANN) for reactive power 
optimization of interconnected power systems. Feed-forward ANN with Back Propagation (BP) training algorithm is used and the 
training data is obtained by solving several abnormal conditions using Linear Programming (LP). Considering  generator voltages, 
reactive power sources and transformer taps as control variables, and load bus voltages and generator reactive powers as dependent 
variables. The relations are derived according to sensitivity relations based on Newton-Raphson load flow equations. The 220 kV 
network of the Unified Power System of Egypt (UPSE) was used in this paper to test the suggested approach.  

Keywords: Reactive power optimization; hybrid intelligent system; linear Programming; Topology evaluation; knowledge base; neural 
networks.   
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1. INTRODUCTION 
One of the main requirements in power system is to keep 
the load bus voltage within limits specified for the proper 
operation of equipment. Any changes to the system 
configuration or in power demands can result in higher or 
lower voltages in the system. The operator can improve 
this situation by reallocating reactive power generations in 
the system by control devices (transformer tap settings, 
generator voltage magnitudes and switching VAR 
sources). The main objective function of reactive power 
control is to: 

•  improve the voltage profiles, and  

•  minimize the system losses. 

Earlier, several techniques have been employed using 
sensitivity relationships and gradient search approaches to 
overcome this complex problem [1, 2]. These techniques 

give the approximate changes in bus voltages for a given 
control action. In these approaches, the bus voltage 
violations are alleviated one by one. So these methods can 
be used in small number of violations. In case of many 
violations, the method may run into an infinite number of 
iteration. 

To avoid these difficulties linear programming (LP) 
approach [3-6] has been proposed to yield the control 
actions. In most of these studies, the LP problem has been 
formulated using real valued control variables in order to 
reduce the computational effort. However these methods 

are complex and require significant computational effort 
to determine the required adjustments to control variables. 

Artificial intelligence (AI) methods have also been applied 
to control the reactive power and voltage to be within 
acceptable limits. The expert system (ES) techniques [7] 
are applied to identify the system operating conditions, 
detect the bus or buses at which certain constraints have 
been violated, and select the appropriate control actions to 
alleviate the voltage violations. Therefore, ES decides and 
gives proper signals to perform the control actions of the 
power system.  

References [8-10] presented fuzzy logic theory to optimal 
control of reactive power. Using fuzzy sets operators, the  
coefficient of the objective functions are calculated for 
each bus and membership functions are defined for bus 
voltages. The advantage of these techniques is to 
overcome the limit of bus voltage variations by adjusting 
one of the control devices.  

The line outage contingency create the under and over 
voltage condition in the system. The most critical bus was 
identified by the voltage difference from the base case and 
contingency case. The most effected bus has been selected 
as the point where MVAR has to be injected.  ANN 
technique [11] was implemented for predicting the 
injected MVAR at critical bus. 

Reference [12] presented a review of computational 
intelligence techniques as applied in load shedding and 
discussed the relative merits and demerits of each against 
the others   
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Reference [13] presented the differential search algorithm 
for solving the reactive power planning. The technique 
designed to solve the problem of the non-feasibility 
solution of the fuel cost minimization problem where the 
IPM is applied, for a given operating point. 

This paper proposes a new artificial neural network-based 
approach (ANN) for reactive power optimization of 
interconnected power systems. The training data is 
obtained by solving several abnormal conditions using 
Linear Programming (LP). The 220 kV network of the 
UPSE was used in this paper to test the suggested 
approach. 

2. REACTIVE POWER OPTIMIZATION 
PROBLEM    DEFINITION 

The definition of reactive power optimization can be 
divided into four categories: network, controls, objectives, 
and constraints.   

• Network: the model common in all functions that 
require a network definition. The optimal power flow 
must respect the physical constraints implied by the 
network definition. The primary network constraints 
are the bus real and reactive power mismatch equation, 
the same ones that the basic power flow solves. 

• Objectives: the desirable solution attributes that are not 
specified as constraints. Many common objective 
functions, such as minimizing fuel cost, or finding a 
feasible solution with minimum control movements, 
can be expressed as cost function of the control. One 
common objective function, minimizing active power 
losses, cannot be directly expressed as cost function of 
the control. The job of the reactive power optimization 
is to optimize the objective function while meeting all 
constraints, if possible.  

• Controls: the set of the power system controls (such as 
adjusting transformer tabs, changing generator voltages 
and switching reactive power compensators) that the 
reactive power optimization is allowed to move to meet 
constraints and optimize objectives. 

• Constraints: the limits defined by operating procedure 
that keep the power system within a safe, sustainable 
operating region. These are the equipment operating 
and system security limits, such as bus voltage 
magnitude or line flow limits and so on. Useful by-
products of solving the reactive power optimization are 
the sensitivities of enforcing each constraints, relative to 
the objective (cost) function. This gives the user 
information on how much it is costing to hold each of 
the constraints at its present value.  

It is important that the user understands how to translate 
real world operation problems into reactive power 

optimization problem definitions, and how to interpret the 
reactive power optimization results. Defining the problem 
may require several iteration between definition and 
solution. As the user sees the results from one definition, it 
may be necessary to change that definition. For example if 
the reactive power optimization suggests unreasonable 
control recommendations due to inappropriate problem 
definition, it will be necessary to correct the problem 
definition and tray again.    

3. TRADITIONAL OPTIMIZATION 
TECHNIQUES.    

Because reactive power optimization can be set up in so 
many different ways, this section will focus upon a few 
typical scenarios. To become familiar with how reactive 
power optimization functions, it is useful to look at typical 
power system problem definitions [10].  

When the user specifies an empty set of controls, the 
optimization program effectively reduces to a power flow 
solution. This is a relatively inefficient way to run a power 
flow, but optimal power flow solves the bus mismatch 
equations and provides output similar to a power flow 
solution. Optimization program provides the same state 
solution, including bus voltage and branch flows, as the 
standard power flow.  

• Also optimization program may be set up to run a 
constrained economic dispatch of the generation. For 
example, given the generation cost data, the network 
model and the load profile, the optimal power flow can 
be run to give a power flow solution with an economic 
generation profile. The optimization program can 
determine the lowest cost solution that does not cause 
network security problems.   

• Optimization program can be used to minimize real 
power loss through reactive power dispatch. In this 
case, only reactive controls (e.g. transformer tap 
positions, shunt capacitors and reactors, and MVAR 
output of generating units) are used to minimize losses 
on the entire network, or on a subset of the network. 

• Using a “minimum of control movements” from the 
starting point, the optimal power flow can be used to 
find a feasible solution (or determine if one exists). In 
this case the objective is to minimize the cost function 
based on control deviation from the base case. The user 
may define parabolic cost curves, with their minimum 
point centered on the base case control setting. Only 
those controls that must move to alleviate constraints 
violations will move, due to the resultant increase in 
cost. 

Traditional optimization techniques have some 
disadvantages such as: 
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• data communications requirements. 

• algorithmic  complicity. 

• execution time, which restrict their use in real- 

       time  

      voltage optimization or losses minimization  

       strategies. 

4. NEW BACK PROPAGATION  NEURAL NETWORK     
(BPNN) SYSTEM  FOR REACTIVE POWER      
OPTIMIZATION 

Artificial neural networks (ANNs) have the potential 
advantage over conventional techniques in significantly 
improving the performance of the other techniques. The 
artificial neural networks (ANNs) have been recognized as 
useful tools for the identification and control of the system 
with different nonlinearities. This is so by virtue of the fact 
that ANNs have the capability of non-linear mapping, 
parallel processing and learning; these attributes make 
them ideally suited for power system control application. 
In the power systems (ANNs) have been successfully used 
for short term load forecasting, power  system control, 
fault detection, harmonic propagation, and so on.  The 
block diagram of the new back propagation neural 
network (BPNN) system for reactive power optimization 
is shown in Fig.1. The method is based on using linear 
programming technique to generate different training 
patterns and obtain the input data to ANN. In this respect, 
the ANN is trained to determine the proper adjustment of 
the control variables required to alleviate over-voltages, 
under-voltages and generator reactive power limit 
violations. More details about the complete system in 
section eight. 

 
Fig. 1. The block diagram of the back propagation neural 
network (BPNN) system for reactive power optimization. 

5. LEARNING IN ARTIFICIAL NEURAL 
NETWORKS 

Among the many interesting properties of a neural 
network, the property that is of primary significance is the 
ability of the network to learn from its environment, and 

to improve its performance through learning. The 
improvement in performance takes place over time in 
accordance with some prescribed measure. A neural 
network learns about its environment through an iterative 
process of the adjustments applied to its synaptic weights 
and thresholds. Ideally, the network becomes more 
knowledgeable about its environment after each iteration 
of the learning process. Research in learning has been 
conducted/on animals of different intelligence levels and 
on humans of different ages and intelligence levels. 
Learning is not a unique process; there are different 
learning processes, each suitable to different species.  

 Not all learning processes are equally efficient. In artificial 
neural networks, the concepts of learning process have 
been borrowed from the behaviorist's lab and ported in 
actual electronic circuitry. Learning is a process by which 
the free parameters of a neural network we adapted 
through a continuing process of stimulation by the 
environment in which the network is embedded. The type 
of learning is determined by the manner in which the 
parameter changes take place.     This definition of the 
learning process implies the following sequence of events 
[7]: 

• the neural network is stimulated by an  environment 

• the neural network undergoes changes because of this  

stimulation 

• the neural network responds in a new way to the  

environment, because of the changes that have 

occurred   in its internal structure 

6. A BACK-PROPAGATION 
Back-propagation technique was created by generalizing 
the Widrow-HOff learning rule to multiple layer networks 
and non-linear differentiable transfer, functions. Input 
vectors, and the corresponding output vectors are used to 
train a network until it can approximate a function, 
associate input vectors with specific output vectors, or 
classify input vectors in an appropriate way as defined by 
user. Networks with biases, at least one sigmoid neuron 
layer, and a linear output neuron layer are capable of 
approximating any reasonable function [14]. 

     The back-propagation learning rules are used to adjust 
the weights and biases of networks to minimize the mean 
squared error of the network. This is done by continually 
changing the values of the network weights and biases in 
the direction of steepest decent with respect to error. This 
is called a Levenberg-Marquardt (trainlm) procedure. 
Changes in each weight and bias are proportional to that 
element's effect on the mean squared error of the network 
[14, 15].     
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     Trained back-propagation networks tend to give 
reasonable answers when presented with inputs that they 
have never seen. Typically, a new input will lead to an 
output similar to the correct output for input vectors used 
in training that are similar to the new input being 
presented. This generalization property makes it possible 
to train a network on a representative set of input/target 
pairs and get good results for new inputs without training 
the network on all possible input/output pairs [16]. 

     The back-propagation training may lead to a local 
rather than a global minimum. The local minimum that 
has been found may be satisfactory, but if it is not, a 
network with more layers and neurons may do a better 
job. However, the number of neurons or layers to add may 
not be obvious. Alternatively, one might run the problem 
using several different set of initial conditions to see if 
they led to the same or different solution.  

7.  GENERATION OF TRAINING DATA  
To design a neural network it is very important to train 
and test the network. The well trained neural network 
should give the right decision for both normal and 
abnormal operating conditions. To achieve this important 
goal, the training data should be selected carefully. In this 
case, the training data should cover the  expected range of 
operation for each bus (including both normal and 
abnormal operating condition).  

8. A NEW BACK PROPAGATION NEURAL NETWORK 
(BPNN) SYSTEM FOR REACTIVE POWER 
OPTIMIZATION CONFIGURATION DETAILS 

In this section, a description of the proposed (BPNN) 
system components and its operation is introduced. The 
block diagram of the proposed system is shown in Figure 
1.The system consists of four fundamental components 
which are: Sensitivity Factor Module (SFM), Actual 
Topology Evaluation Module (ATEM), Linear 
Programming Module (LPM), and Back propagation 
Neural Network (BPNN).   More details about each one is 
as follows.  

8.1. ACTUAL TOPOLOGY EVALUATION MODULE   
(ATEP) 

The term "Actual Topology" is meant to cover the nodes 
and impedance bearing branches necessary for a physical 
description of the system with reference to the switching 
state at a certain point in time. And  the term  "Potential  
Topology" is meant to cover all existing switchable and 
fixed connecting elements of a network between and 
within substations, fields,  etc.  

The topology evaluation routine is able to read the data-
base, to calculate the actual topology and to generate 
special lists of network elements as:   

• nodes.  

• branches (lines  and transformers). 

• loads. 

The actual topology consists of all nodes and branches 
with impedances,  which are connected with a 
synchronized power unit. The data available from the 
listing after the actual topology evaluation are: 

• R [Ohm], X [Ohm], G [Siemens]     and B [Siemens]. 

• maximum  power [MVA]. 

• connectivity. 

8.2. SENSITIVITY FACTORS MODULE   
The sensitivity factor module assists the system during the 
solution of the problem. In order to calculate the changes 
in the load bus voltages and generator reactive power 
outputs for a given increment in control variables 
sensitivity factors can be employed. 

8.3. LINEAR PROGRAMING MODULE 
To use the linear programming approach to compute the 
required control actions, an objective function to be 
minimized and a set of constraints must be first defined. 
In the literature, several objectives function such as 
minimizing the total amount of adjustments or 
minimizing transmission losses have been employed. 
Before the objective function for this work was chosen, a 
discussion with operators at Egyptian unified power 
network (EUP) has been made. After these discussions the 
impression that the operators favor a control action that 
requires least number of switchings of 
capacitors/inductors and/or an adjustment to transformer 
taps had been got. The main reason why they favor such a 
control action is that capacitor/inductor switching and tap 
adjustment tend to reduce the life expectancy of these 
devices and increase the maintenance cost. Based on these 
practical considerations, we propose to use the objective 
function of minimizing the total number of required 
switching/adjustments to control the voltage in this paper. 
In other words, the objective is to  

Minimize   Z =∑ 𝑥𝑖𝑖                                                        R(1) 

where XRiR is the number of capacitors/inductors that have 
to be switched on/off or the number of  steps that the 
transformer tap should adjusted  to at bus i. Note the other 
objective functions can also be employed if desired. The 
constraints in the linear programming formulation include 
the following: 
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• Constraints on control variables. 

 ΔQ i min ≤  ΔQi ≤  ΔQimax                                     (2) 

Δt pq min  ≤  Δt pq ≤   tpqmax                                     (3)  

•  Constraints in bus voltage                                  

Vi min ≤  Vi ≤  Vimax                                                (4)  

  Where:   

ΔQi is the increment of the reactive power of 
switchable Capacitors/Inductors  at bus i, 

Δt pq  is the increment of the  transformer tap 
between buses p and q  

 9. APPLICATION EXAMPLES 
In real world operating conditions of the system are 
changed due to the change in the load demand. This will 
lead to changes in the load bus voltage violation. The 
developed  system has been applied on the 220 KV 
network of the Unified Power System of Egypt (UPSE) in 
order to demonstrate its effectiveness. The single line 
diagram of the (UPSE) is shown in the appendix A1. A 
final voltage profile characterized by minimum and 
maximum voltage levels of 1.0 pu, and 1.05 pu., 
respectively was considered for this study. In all the 
following figures which represent different  case studies, 
the continuous line represents the initial voltages profile 
and the dashed line represents the final voltages profile.  

9.1. CASE ONE   
The results of the application of the new back propagation 
neural network system on the 220 KV network of the 
Unified Power System of Egypt (UPSE) are shown in Fig 2. 
Over-voltages observed at two buses , and under-voltages  
observed at five buses. After applying the proposed 
system one can see from the results in Fig 2. that, all the  
bus voltage  violations are alleviated. On the other hand 
the amount of reactive power required to reach the 
optimal solution is equal to 7.8 pu.    

 

Fig. 2. Initial and final voltage profile for the 220 KV 
Network of the UPSE. 

9.2. CASE TWO 
In this case after voltage correction (refer to the results of 
section (9.1) the lines between buses (19-20) and (8-27) in 
the  220 KV network of UPSE is switched off, resulting in 
distortion in the system voltage profile as in Fig 3.  

 
Fig. 3.  Final voltage profile if the lines between buses (19-

20) and (8-27)37 in the 220 kV network of the UPSE is 
switched off. 

Under-voltages are observed at several  buses. After 
applying the proposed system one can see from the results 
in Fig 3. that, all the  bus voltage  violations are alleviated. 
On the other hand the amount of reactive power required 
to reach the optimal solution is equal to 10.2 pu.   

9.3. CASE THREE 
In this case after voltage correction (refer to the results of 
section (9.1) the load at bus  (19) in the 220 KV network of 
the UPSE is switched off, resulting in distortion in the 
system voltage profile as in Fig 4.   

 
Fig.  4. Final voltage profile if the load at node 19 in the 

220 kV UPSE is  doubled. 

Under-voltages are observed at several buses. After 
applying the proposed system one can see from the results 
in Fig 4. that, all the  bus voltage  violations are alleviated. 
On the other hand the amount of reactive power required 
to reach the optimal solution is equal to 9.27 pu.   

9.4. CASE FOUR 
In this case after voltage correction (refer to the results of 
section (9.1) the load at bus  (17) in the 220 KV network of 
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the Unified Power System of Egypt is doubled, resulting 
in distortion in the system voltage profile as in Fig 5. 

 
Fig. 5. Final voltage profile if  the load at node (17 )  in the 

220 UPSE is  doubled.  

 

Under-voltage are observed at several  buses. After 
applying the proposed system one can see from the results 
in Fig 5. that, all the  bus voltage  violations are alleviated. 
On the other hand the amount of reactive power required 
to reach the optimal solution is equal to 7.5 pu.  

9.5. CASE FIVE    
In this case after voltage correction (refer to the results of 
section (9.1) the load at bus  (16) in the 220 KV network of 
the UPSE is  switched off, resulting in distortion in the 
system voltage profile as in Fig 5.  

 
Fig. 6. Final voltage profile if load at node 16 in the 220 kV 

network of   the UPSE is  switched off. 

 

Over-voltage are observed at several  buses. After 
applying the proposed  approach one can see from the 
results in Fig 6. that, all the  bus voltage  violations are 
alleviated. On the other hand the amount of reactive 
power required to reach the optimal solution is equal to 
6.35  pu. 

10. CONCLUSION 
A new Back Propagation Neural Network (BPNN) system 
for reactive power optimization is developed in this paper. 
The (BPNN) system was tested on the 220 KV network of 

the unified power system of Egypt and proved to be 
efficient. The (BPNN) system results proved the high 
accuracy and the suitability for the on line applications. 
The (BPNN) system is an excellent model that can be 
integrated in an open SCADA/EMS environment. Using 
the system in an actual control center will enable the 
control of the system voltage profile in a tracking mode.  
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APPENDIX A1: The single line diagram of the  220 KV 
Network of the Unified Power System of Egypt  
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